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The second-order fluid model having the equation of state 

pik = -pgik +a,A:lk) + a,A$iAg)" + a 2 A',) ilc 

in the usual notation defined in 9 1.2 is normally considered adequate for 
describing the rheological behaviour of dilute polymer solutions. However, 
normal stress differences associated with the ai are too small to be measured and 
Graebel (1961) suggested that experiments on Taylor stability would yield 
information from which the ai could be evaluated. Since then a considerable 
literature has grown up and the work described here was done to test current 
ideas. 
a, and a2 may be evaluated by one of three methods. (i) The value of the critical 

Taylor number Ta, for the polymer solution is different from that for a Newtonian 
liquid; put A = GTaJTa,, where GTa, is the difference, then A is related to a,, a, 
and 7 (= R,/R,, where R, and R, are the radii of the cylinders in the Couette 
apparatus). By determining A for two values of 7 the necessary two equations 
for determining a, and a, are obtained. (ii) The wavenumber ec is also a function 
of a, and a, and values of A and of ec for a given 7 give the necessary two equations. 
(iii) The tangential stress G on the stationary outer cylinder is a linear function 
of 1 - Tac/Ta when Ta > Ta,; the slope of the line is a function of a, and a2 and 
the slope and the value of A for given 7 give the necessary two equations in this 
case. Method (iii) is the most accurate experimental method. 

The apparatus enabled experiments to be done for 7 = 0.50, 0-70, 0.80, 0.90, 
0-925 and 0.950. Most experiments were done with the three narrowest gaps. 
Method (i) did not give physically meaningful results in that 01, was positive for 
all solutions tested. Method (ii) can only give unique results when 7 = 0.95. The 
theory of method (iii) only applies to a narrow gap whereas for the other two 
methods the theory used was general. Results obtained by methods (ii) and (iii) 
were in agreement for 7 = 0.95. Average values found for a 250 p.p.m. aqueous 
solution of polyacrylamide were 

The accuracy in the determination of values at other concentrations and for other 
materials was less (about 10 %) because the number of determinations of each 
value was smaller. The ratio N2/N, of the second to the first normal stress coefi- 
cient is always negative and for the polyacrylamide solutions is constant 
( = 0.02) and independent of concentration. 

(a1 + 2a,) = - (0.75 f 0.04) mg m-l and a2 = - (20.8 4 0.2) mg m-l. 
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To achieve meaningful results Ta, must be measured to within better than 
1% and E, and the slopes of the lines to within about 1 %. Visual observation of 
Ta, is not accurate enough. Suggestions for optimizing the experimental design 
are given. 

1. Introduction 
1.1. Newtonian Jluids 

Consider two coaxial cylinders with fluid between them; the inner cylinder is 
rotated and the outer held at  rest. At a critical speed of rotation centrifugal 
forces overcome viscous forces and a steady secondary motion in the form of 
torroidal vortices spaced regularly along the axis of the cylinders ensues (figure 1). 
Taylor (1923) considered the onset of the secondary flow theoretically and 
arrived at  a dimensionless number Ta as a criterion for the flow. When 
d < R,+ R,, ‘narrow-gap’ geometry, 

where v is the kinematic viscosity of the fluid. Denote the critical value of the 
Taylor number by Ta, then when Ta is such that Ta, < Ta < 1.5Tac the pattern 
of vortices is unaltered but their intensity increases as Ta increases. Taylor found 
that Ta, = 3414. When the assumption of narrow-gap geometry is no longer 
valid Ta, > 3414, the extent of the inequality increasing with d /R ,  according to 

Ta, = 3414/[( 1 - 0.652d/R1) + 0.0098( 1 - 0.652d/R,)-1]. (2) 
Taylor reported (2) to be accurate to within 1 yo in a range of values of r] ( = R,/R2) 
from 0.70 to 1.00. 

1, d and the wavenumber E are related through 

8 = ra/i (3) 

and Taylor showed that d = 1, so that E = r. Taylor verified his predictions 
visually by injecting dye into the fluid from small holes drilled in the surface of 
the inner cylinder. 

Lewis (1928) obtained values of Ta, and of E,  in ‘wide-gap’ apparatus in which 
7 = 0.585,0.70,0*773 or 0.855 for three different liquids, For the widest gap there 
was a 14 % maximum variation in the measured values of eC and for the narrowest 
a 44 yo variation; in all cases E ,  > 7r (average value = 3.27). 

Chandrasekhar (1953) used a somewhat more precise numerical method than 
Taylor’s and found that Ta, = 3390 for the narrow gap with E,  = 3.12. 
Chandrasekhar (1958) also considered a special case ( r ]  = 0.5) of the wide-gap 
geometry, and he showed that Ta, = 6295 with E,  = 3.2 (i.e. 1 = 0.983d). 
Donnelly (1958) and Donnelly & Fultz (1960) experimentally verified those 
theoretical predictions. 

When the vortices occur extra power must be supplied to the rotating cylinder 
to maintain them. Taylor (1936) measured the resulting extra torque and related 
a friction factor to a Reynolds number for the system. Stuart (1958) calculated 
the extra torque using an energy-balance equation and Donnelly & Simon (1 960) 
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FIGURE 1. Axial distribution of Taylor vortices. I is the ’cell size’. 
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found a good fit between the experimental torque and calculated torque for T a  
‘not much larger’ than Ta,. Davey (1962) modified Stuart’s work by taking into 
account the harmonics, as well as the fundamental mode, of the perturbations of 
the mean flow and obtained an expression for the tangential stress G on either 
cylinder for wide-gap as well as narrow-gap geometry. His equation can be 
written (for Ta > Ta,) as 

- 2R; S(Rl+R,)( I - - ,  %) (4) 
Gd 

27rpR; a h  - R,(R, + R,) + 2R, 
in which h is the height of the outer cylinder, over which the resultant torque is 
measured, p is the shear viscosity of the fluid and S is a function which is numeri- 
cally equal to 1.528 for narrow-gap geometry whereas for the particular wide-gap 
case 7 = 0.5, 6 = 0.838. When Ta < Ta, the equation is made valid by writing 
6 = 0. Donnelly (1965) developed an electrical method involving the measure- 
ment of the circulation of ions within the vortices, to determine the intensity 
(that is, amplitude) of the perturbation velocities. Donnelly & Schwarz (1965) 
report several consequential measurements of Ta,, the drag and the amplitude 
for different values of 7; in an appendix to the paper Roberts describes a method 
of theoretically determining Ta, for the wide-gap geometry and tabulates values 
of Ta, as a function of 7 for values of 7 between 0.70 and 1.0. 

Coles (1965) made an elaborate visual study of Taylor vortices and found an 
azimuthal wavy structure setting in when T a  N 1.5TaC. The work is relevant to 
us in that it set an upper limit to the value of Ta for the theories we have used to 
be valid. (Debler, Fiiner & Schaaf (1968) measured Ta, and the drag for values 
of 7 in the range 0.5 to 0.95 and found a change in the torque as the wave pattern 
set in.) 
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1.2. Non-Newtonian Jluids 

No consistent notation has been used in writing equations of state in papers on 
Taylor stability so it is important to define notation and to re-write equations of 
previous workers, in the brief necessary review that follows. A recent interpreta- 
tion of our work with slightly elastic liquids has arisen as a consequence of the 
theoretical work of Chan Man Fong (1970a, b )  and the notation we use is his; the 
relevant equation of state for the second-order fluid is then 

in which p is the hydrostatic pressure and gik = 1 when i = k and g,, = 0 when 
i + k; A&) = vi, , + vk, i ,  where vi is the velocity in the liquid conjugate to the 
direction xi and in the usual way the subscript ‘ , k’ signifies a/ax,; 

A;z+ll’ = a(&’)/at+ dA.&)i + A$’dk + A~?)V;,, 

In  a simple shear flow convention has the velocity in the direction x, and the 
velocity gradient in the direction xz such that v, = yx, and v2 = v3 = 0. 
Equation (5) then gives 

1312 = aOY, Pll-PZZ = NlY2’ p22-1333 = N2Y2, (6 a )  

where N, = - 2az, N, = (a, + 2 4 .  ( 6 b )  

The Ni are the normal stress coefficients; is the first normal stress 
difference and ~ ~ ~ - 1 ) ~ ~  is the second normal stress difference. For the linear 
displacement of an element of fluid to be in the direction of the applied stress az 
must be negative so N, must be positive; there is no restriction on the sign of N2. 
Previous workers (to be referred to) suggest that (N,IN,I < 1. 

It is usual to non-dimensionalize the parameters occurring in ( 6 b ) .  In  the case 
of Couette flow this is done by dividing the equations by 2pd2 and writing Pi for 
Ni/2pd2 and ki for ai12pd2 to give 

P, = - 2k2, P, = k, + 2k2; (6c)  

p is the density of the fluid. 
Couette flow between rotating cylinders is a practical example of a simple 

shear flow. Oldroyd (1950) considered viscoelastic materials in Couette flow 
when the inner cylinder only is rotated; the consequential distribution of normal 
stress differences led to an interpretation of the Weissenberg effect. However, it 
was ten years before Graebel(l961) provided equations to enable az (the ‘cross- 
viscosity’) to be determined from measurements of normal stresses in Couette 
flow and found that the predicted percentage contribution of the non-Newtonian 
behaviour to the stresses was small. On the other hand Graebel found that even 
‘small amounts of elasticity’ would affect the stability. When a, was positive the 
flow was destabilized. He did not discuss fully the case of a, negative but there 
was evidence to suggest that the flow would be stabilized in that case. Thomas & 
Walters (1964) used an equation of state designated ‘liquid B1’ which was very 
similar to the earlier one of Oldroyd (1950). The distribution of normal stresses 
was as given by ( 5 )  with a, = 12a21, that is, N, = 0. They found that the flow was 
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destabilized, the relevant elastic parameter being k,; furthermore, the wave- 
number increased relative to that of a Newtonian liquid. (When k, = 0.005, Ta, 
was smaller by 9 yo and cc greater by 3 yo.) Chan Man Fong (1965) considered the 
same problem using a liquid model Al in which the distribution of normal stresses 
was consistent with setting a, = 0 in (5), and the relevant elastic parameter in 
this case was P2. The elasticity stabilized the flow and diminished the wave- 
number, having an effect opposite to that for liquid model B1. Rubin & Elata 
(1966), in a review of previous work, refer to Datta’s theoretical work on stability 
using (5) as the model. The relevant elastic parameter in that work was P2R,/d; 
when P2 > 0 the flow was destabilized and the wavenumber increased whereas 
when P, < 0 the flow was stabilized and the wavenumber diminished. Rubin & 
Elata also refer to the ‘Ericksen anisotropic fluid’ and point out that a choice of 
positive values for some of the parameters will lead to the prediction of flow 
stabilization with no change in wavenumber. They describe their own experi- 
ments with aqueous solutions of polyacrylamide, of polyox and of guar gum and 
report that in all cases and for all concentrations investigated the flow was 
stabilized with no change in wavenumber in accord with Ericksen’s anisotropic 
fluid model. Rubin, Elata & Poreh (1968) report on theoretical work with yet 
another liquid model designated liquid C1; model C1 differs from B1 in that, for B1, 

p22  = p,, = 0 whereas for C1 only p,, = 0;  in both N, = 0. Model C1 predicted 
destabilization accompanied by a decrease in wavenumber. The predictions of 
all the models so far discussed are summarized in figure 2. 

It is clear from the above discussion that values of P, and of P2 R,ld are relevant 
in discussing Taylor stability. The relative roles of the two were clarified by 
Ginn & Denn (1969) using narrow-gap theory and (5). They found positive values 
of both P, and P2 to be destabilizing and negative values of P, to be stabilizing; 
whether destabilization or stabilization occurs depends on the relative magni- 
tudes of P, and P2RJd. E,  increased with increasing P, and with increasing 
P2 RJd. Graphs showing Ta, and E, as functions of P, and P2 R,ld were produced 
by numerical techniques. Denn & Roisman (1969) tested the theory in apparatus 
affording three choices of RJd, in the range 20-50; measurement of torque was 
used to detect the onset of instability: the transition was sharp but ‘the uncer- 
tainty in establishing the critical Taylor number is of the order of 10 Yo ’. Dilute 
solutions of six different polymers of various concentrations were used in the 
experiments. To analyse the results it was necessary to assume that a, and a2 
were functions of the shear rate. They put -a2 = ay* and a,+2a2 = 2Aayb, 
where h = N,/N2. Using the results for the three gaps ‘the three parameters 
a, b and h were then chosen such that the Taylor numbers predicted by the 
stability theory corresponded to the experimental Taylor number ’ . For only two 
solutions were consistent values of a, b and h obtained. For them, values ofa,  were 
in agreement with values of a2 obtained by extrapolating the results of rheo- 
goniometer experiments done with relative high concentrations, to the low con- 
centrations used in the Couette-flow experiments. h was found to be negative 
and Ihl < 0.05; b was found to be 2.0. 

Hayes & Hutton (1970) worked with aqueous solutions of two types of poly- 
acrylamide, and with polyox solutions, and found stabilization which increased 
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FIGURE 2. Summary of the theoretical predictions of various liquid models. 
Elasticity increasing in direction of arrows. 

with concentration with no change in wavenumber, in all cases (7 = 0.90 and 
0.94). Using Ginn & Denn’s theoretical diagrams they found all their results to 
lie in a region where N, and N, were negative; therefore they concluded that the 
model ( 5 )  cannot be valid in their situation. (Their results are on the other hand 
in accord with the predictions from the Ericksen anisotropic fluid.) Goddard & 
Miller (1967), Karlsson, Sokolov & Tanner (1971), Lockett & Rivlin (1968) and 
Smith & Rivlin (1972) consider the second-order fluid having three material 
constants to be inadequate to describe results of experiments on Taylor stability 
and each suggests that several material constants (up to nine) would be necessary. 

All the above theoretical work involved the assumption of narrow-gap geo- 
metry. It was possible that the disagreement between second-order-fluid theory 
and the experimental results could be attributed to that assumption rather than 
inadequacies in the fluid model. Chan Man Fong (1970b) used model (5) to discuss 
the general case of the wide gap in such a way that the narrow gap was a special 
case. The numerical results he published were insufficient to produce a set of 
comprehensive curves relating Ta, to a, and a2 but a three-dimensional surface 
could be produced. A drawing of such a surface is shown in figure 3. Chan Man 
Fong also considered the effect of elasticity on ec. The recent purpose of the work 
to be described in this paper was to see if ai could be evaluated by comparing 
results on Taylor stability with Chan Man Fong’s theoretical predictions. 

However, before going on to describe our work, a further relevant connexion 
between elasticity and Taylor vortices must be mentioned. During secondary 
flow in elastic liquids G as given by (4) may be less than anticipated (cf. Jones & 
Marshall 1969). Chan Man Fong (1970a) discussed such ‘drag reduction’ for 
narrow-gap geometry in terms of a Reynolds number. Denn, Sun & Rushton 
(1971), on the other hand, also from narrow-gap theory, arrived at  a modification 
of (4): 

2rpR3 Gd Qh - - R,(Rl 2R’ + R,) + ~ ( R 1 + R 2 ) - 6 P 1 + 6 P 2 ~ )  2Rl ( 1 - 2 ) .  (7) 
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P2 x 102 

FIGURE 3. Ta, as a function of PI and P2 for 7 = 0.95. Theoretical results taken from 
Chan Man Fong’s (1970b) paper with his numbers converted to our definition of ki. 

Equation (7) is a relationship between a1 and a2. A second relationship- albeit 
a complicated one requiring a numerical solution-is the one mentioned above, 
obtained from observation of differences in Ta, between solution and solvent. 
Denn, S u m  & Rushton state that those two relationships, obtained for the same 
value of 7, can be used to determine a, and a2 but they quote no values determined 
in such a manner. 

Our experiments were initially concerned with testing apparatus and verifying 
that there were changes in the value of Ta, and in the amount of drag in dilute 
polymer solutions compared with Newtonian liquids (Marshall 1967; Jones & 
Marshall 1969), 7 = 0.95. The experiments were extended to find the effect of 
temperature on Ta, and on drag reduction (Davies 1968). Recently, Davies 
(1972) has done experiments with various values of q ranging from 0.5 to 0.95 
and has measured the cell size. During the work it became apparent that three- 
dimensional surfaces such as those in figure 3 were too crude for finding the ai for 
the small changes in Ta, which were being observed and H. Holstein of the Com- 
puter Science Department (UCW) produced a set of curves (figures 5 and 6) which 
could be quickly used to find the us from measurements of Ta, and ec. Finally it. 
was found that measurement of Ta, to within & 14 % (as done by Davies) was 
not accurate enough and M. C. Thomas has re-done some of his work to determine 
Ta, to within f 0.8 yo, which is the best that can be done with our apparatus. 
All our work is reported in this paper together with our assessment of the study 
of Taylor vortices as a means of determining the material constants of dilute 
polymer solutions. 

The work is considered fundamentally important in that despite the long 
standing of equations such as (5) experimental evaluation of the as has not been 
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FIGURE 4. Ta, as a function of 7 for Newtonian fluids. Points are experimental. ---, theories 
of Taylor and of Roberts; -, Holstein’s theory. ( a )  All results. ( b )  Section of (a)  enlarged. 
(c) Results of those claiming 1 % accuracy or better. 3k, DMD ; A, MCT; ., Donnelly etal. ; 
e, Hayes & Hutton; x , Taylor. 

achievedfor ‘weak’ elastic fluids such as dilute polymer solutions; it is considered 
industrially important because when the ai are known (5) could be used to predict 
results in other geometries. 

While the theoretical and experimental work referred to above was being done 
other more qualitative experiments were carried out. Some of the results of that 
work were used in preparing figure 4; see Merrill, Mickley & Ram (1962), Song & 
Tsai (1966), Giesekus (1966) and Bailey (1969). 
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FIGURE 5. Theoretical curves of constant A as a function of the uI. 
(a) r = 0.90. ( b )  7 = 0.925. (c) 9 = 0.95. 

2. Theory 
From figure 4 it is seen that there is a good agreement between the theoretical 

curves, but the ‘best ’ experimental results (figure 4 c )  are with one exception 
l -2% less than the theoretical values. Possible reasons for the difference are 
examined in 5 5 but as a consequence of it (Ta; - Ta,}/Ta, = A, rather than Ta;, 
has been determined theoretically as a function of the a$, where Ta; refers to the 
elastic liquid and Ta, to Newtonian liquids (figure 5 ) .  (Note the greater sensiti- 
vity of A to the ai as 7 increases.) Experimental determination of A for any two 
gaps should produce two curves giving values of a, and az a t  the point of 
intersection. 

An alternative to working with different gaps is to measure Ta, and E,  in the 
same gap (figure 6 ) .  It is seen that curves of constant A and constant E cross for 
the case when q = 0.95 only, so results in the other two gaps would not give 
unique values for the at 

Another alternative is to measure A and the drag reduction in a given gap. 
Then it is convenient to alter the form of (7) by substituting for P, and P, and by 
collecting terms in R,, R, and d on the right-hand side, thus giving 
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FIGTJRE 6.  Theoretical curves of constant A (solid lines) and of constant 2 (broken lines) as 
(a) 7 = 0.90. 

( b )  7 = 0.925. (c) T/ = 0.95. 
function of the a,. (a = (6, for non-Newtonian fluid)/(€, for water).) 

where K is a constant of the apparatus, 6 is the angular twist of the torsion fibre 
supporting the outer cylinder, P is the period of rotation of the inner cylinder, 

A = 2R2, R;/d(R, f R2) ,  B = R;(R, i- R2)/2d, 

$(a,, az) = P a  3 (3)* [a,, 2% (1 +;)I. 
When primary flow only occurs +P/p  is constant ( = A / K )  and an average experi- 
mental value (+P/p)av may be obtained from several measurements in the 
primary-flow region. Hence K = A / ( $ P / , U ) ~ ~  is obtained. If I+[ is written for 
(q5P/,u)/(q5P/p)av, equation (8) becomes, for Newtonian fluids, 

(B /A  = 7 to within + % for q from 0.90 to 1.00). 
[ # I  = 1*0+6q(l-Ta,/Ta) (10) 
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FIGURE 7. Theoretical curves of constant A (solid lines) and of constant sI/s2 (dotted lines) 
as a function of the ai. (a) T /  = 0.90. ( b )  T /  = 0.95. 

Straight lines should be obtained when 141 is represented as a function of 
1 - TaJTa, and 6 may be found from the slope s1 of the line obtained with 
Newtonian liquids. The ratio sI/s2, where s2 is the slope of the line obtained with 
the elastic liquid, gives 

Values of the at may then be obtained from curves such as those in figure 7. (It 
should be noted that (10) and (1 1) are independent of K and therefore experiments 
done with different torsion fibres could be used for comparing slopes.) 

(11) Sl/S2 = SS/(SB + @(% 4). 

3. Experiments 
The basic apparatus (in which 7 = 0.95) and the experimental procedure were 

described by Jones & Marshall (1969); since then other inner cylinders have been 
provided enabling experiments to be done for 7 = 0.925,0-90,0.80,0.70 and 0.50. 
Furthermore, a transparent outer cylinder (of Perspex) has been fabricated which 
enables visual experiments to be made for each gap. A streak of ink is placed down 
the wall of the inner cylinder and the apparatus is assembled and immersed. In  
primary laminar flow the ink spreads around the inner cylinder but at the point 
of instability the ink circulates in the vortices and is photographed; the print is 
measured to give the cell size. 

The largest value of A we have measured was 0.12 but most values lay between 
+0.03. It will be appreciated therefore that accurate determination of the 
material constants can only arise if Ta,  is determined with precision. A discussion 
of the accuracy of the apparatus is therefore relevant. 
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Of the quantities in the expression for Ta,  equation (1)) R, and R, can be 
measured to within & 0.0001 ern thus giving d to within 5 0.0002 cm. The largest 
possible error in Ta, due to that cause is therefore 6 yo when 71 = 0-95 and since 
the error is constant, then, for example, if the observed A is 0.03 then the 6 % 
error in Ta, means A could lie anywhere between 0.028 and 0.032. 

The accuracy of the value substituted for v depends entirely on the accuracy 
to which the temperature of the fluid is known. The bath temperature can be kept 
constant to within 0.2 "C and the temperature during any one determination 
of q5 and P measured to within & 0-1 "C. That means that p and hence v is known 
to within 0.2 % and any value of T a  to within 5 0.4 %. But these are now 
random errors and if the value of A is 0.030 the uncertainty in Ta, will mean that 
the range of possible values of A is 0.022 to 0.038. 

The accuracy of Q, depends on the accuracy to which the onset of the instability 
can be observed from the torque measurement. Donnelly (1958) has established 
that there is a discontinuity in the torque at  the transition and approaching this 
discontinuity using our apparatus is limited by the precision to which the 
speed of rotation can be adjusted. The adjustment is such that, at the critical 
condition when P N %OOs,  the period cannot be adjusted to within better 
than 0.01 s, and in an 'average' experiment the uncertainty is nearer 0-015 s, 
hence P, 2: (2.000 f 0.008) s, leading to a possible 0.8 yo error in Ta, and a possible 
range of values of A from 0.14 to 0.46 when A N 0.30. (In a very few experiments 
the adjustment can by chance, be better; our best value of P, was (1.698 & 0.002) s, 
leading to a 0.2 yo error in Ta,.) 

The above limits on accuracy can only be achieved by careful experimentation. 
Most of our early experiments were done with the idea that the Taylor vortices 
were very sensitive to elasticity; at  that time repeated experiments showed our 
values of Ta, to be reproducible to within around rt: 14 %. The above analysis 
would suggest that the best we could hope to achieve would be a rt: 0-7 yo proba- 
bility error or a 1.2 % uncertainty, as a consequence of the random errors. The 
best we have achieved by repeated measurements of Ta, is 

The visual technique of finding Ta, is not accurate enough. In  the first place 
embryo cells, which do not fill the gap, appear when T a  < Ta,, so one has to note 
carefully when the vortices first fill the gap and that is difficult to do. (Hayes & 
Hutton (1970) also report on those difficulties.) We were only able satisfactorily 
to see the transition because of prior knowledge from torque measurements. 

Another measurement to be made in the experiments is of E.  The length of 
annulus visible through the outer cylinder is 4.40 cm and hence, when 7 = 0.95, 
there are 44 cells, whose average size 1 is to be determined. However, the axial 
distribution of the sizes of the cells (figure 8) is such that the root-mean-square 
deviation from the mean of the sizes shown is 3.5 yo. Repeated measurement of 
the average cell size also gives large variations. The eight values of the average 
cell size determined from eight photographs each taken after the apparatus had 
been dismantled and re-assembled, showed a r.m.s. deviation of 4 yo from the 
mean of the eight values. To determine E so that consequential inaccuracies in 
the ai are no worse than those resulting from uncertainty in A would require 1 % 
accuracy in the cell size and therefore photographs of 130 repeated experiments 

0.8 %. 
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FIGURE 8. Axial variation of cell size. 7 = 0.95. 

of the cell pattern at  the transition. To sum up: cell size is relatively insensitive 
to elasticity and to aggravate the situation the cell pattern itself makes accurate 
measurement impractical. Nevertheless, even with such limited accuracy as can 
be achieved, the results will show that trends in the values of the ai can be estab- 
lished using figure 6 ( G ) .  

The method using figure 7 is applicable to narrow gaps only and involves the 
measurement of 4 as a function of P. Three factors affecting the accuracy have 
to be taken into account. 

(i) A zero error 84 can occur in setting the torsion head, which alters the 
reading of 141 from unity to 1.0 2 8414. In some of our results there is evidence 
of a contribution from 84 but in such cases 141 reaches the value unity (i.e. 
84 Q 4) well before secondary flow sets in, when the measurement of s1 and s2 
becomes relevant. 

(ii) Error due to small oscillations of the outer cylinder during secondary flow 
can be reduced to within required limits by taking a sufficient number of readings. 
(When Ta, is measured to within 0-8 %, s1/s2 must be measured to within 0-7 yo 
to have no more than a comparable effect on the ai.) 

(iii) There is a force of static friction in the telltales which increases as the 
torque applied through the suspension to the outer cylinder increases, so that, 
when the viscosities of aqueous glycerol solutions were obtained from the torque 
in the solution relative to that in water (using water as standard) the values were 
too large: in fact, the larger the viscosity the larger the discrepancy. When the 
ratio of the values of ,LL for glycerol and water was 1.20, the ,u for glycerol was 2 % 
too large. Since in all these measurements 141 = 1-0 throughout the laminar flow 
region, the frictional force called into pIay must be proportional to y thus effec- 
tively increasing ,u by a constant 8,u in any one experiment. (Donnelly (1958) gives 
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FIGURE 9. Experimental values of A superposed on the theoretical curves 
of figure 5 together with experimental tolerances. 

values of quantities which can be used to show that he was finding similar effects 
in his apparatus.) The ultimate effect of the frictional force is the same as would 
be obtained if K [equation (S)] were increased for that particular experiment and 
therefore the value of @(al,ct2) found from (11) will not be influenced by the 
friction. We have also found that Ta, is not affected by the friction provided that 
the value of p as found in the Ostwald viscometer is used in the calculation of Ta,  
and not the apparent viscosity obtainable from the Couette apparatus; that 
means that the friction does not affect the sensitivity of the instrument to the 
onset of the Taylor instability. Also the viscosities of the test materials cannot 
be found sufficiently accurately in situ. But the important conclusion is that 
experimental data of torque measurements must be normalized as in (10) for 
accurate conclusions (within better than 2 %) to be drawn concerning relative 
drag in separate experiments on secondary flow. 

4. Results 
4.1. Using the values of A found for three different 7 to determine ai 

In figure 9 (a) the consequences of determining A to within 5 0.03 are adequately 
illustrated. When7 = 0.90, Awas 0.02 f 0.03; when 7 = 0.925, A was - 0.03 & 0.03; 
when 7 = 0.95, A was 0-025 t- 0.03. The three bands of possible values of the ai 
all overlap in the region where a2 lies between - 3.2 and - 9.6 mg m-1 and a1 + 2a, 
lies between - 0.1 and - 0.4 mg m-l. For all the other materials and concentrations 
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Concentration 
Material (p.p.m.) 1008 

Polyacrylamide 50 - 2.7 
100 0.0 
250 0.0 

‘ Kelzan ’ 10 4.5 
50 4.5 

Polyox 50 2.5 
100 10.0 
250 7.5 
500 5.3 

5 

1.012 
1-008 
0-982 

0.962 
0.928 

0-995 
1.040 
1.032 
1.030 

- (a1 + 2%) 
(mg m-l) 

0.03 
0.35 
0.70 

0.75 
0.95 

0.42 
- 

- &a 
(mgm-1) - A  

2.0 0.01 
8.0 0.02 

20.0 0.02 

18.5 0.02 
27.0 0.02 

8.6 0.02 
+ ve 
+ ve 
+ ve 

- 
- 
- 

TABLE 1. Values of the material constants determined from figure 6 using experimental 
measurements of A and of 1 (temperature t = 25OC). Experimental accuracy is discussed 
in the text. 

tested in the three gaps the three bands do not overlap in the region where a2 is 
negative. To obtain an overlap the bands had to be extrapolated to positive a2. 
Consequently a1 was equated to a + by2 and a, + 2a2 to h(a + by2) ,  inwhich a, b and 
h were regarded as constants (cf. Denn & Roisman 1969; see 9 l),  and the results 
in the three gaps were used to evaluate a, b and A. No real mathematical 
solution was obtained in any one case. 

A factor affecting the results was the presence of slots inadvertently cut in the 
guard rings for admission of fluid to the apparatus. These slots went unnoticed 
until our experiments with the wider gaps were begun and then the experimental 
value of Ta,  for Newtonian fluids was 12 yo greater than the theoretical value; 
when the slots were sealed the theoretical and experimental values agreed. The 
effect was similar to that predicted by DiPrima (1960) when an axial flow is 
present, which suppresses the Taylor vortices. Griffiths & Thomas (1966) theo- 
retically confirmed DiPrima’s work but also showed that in an elastic liquid the 
suppression of the vortices is less marked. Some of the results shown in figure 4 (a )  
suggest that a small axial flow was present in some sets of apparatus and since 
Newtonian and non-Newtonian fluids are not similarly affected erroneous results 
would be obtained for A. Those of our earlier results which were repeated with the 
slots sealed, giving Ta,  to within 5 14 %, were not altered in the narrower gaps 
(7 = 0.90, 0.925 and 0.95). Nevertheless, we felt more accurate experiments were 
required with the slots sealed and the consequences for A of measuring Ta,  to 
within 5 0.08 yo are shown in figure 9 (b ) .  But again no value of the ai was 
obtained in the region where a2 is negative. 

4.2. Using values of A and of B to determine ui 
Realistic values of the ai were obtained for polyacrylamide solutions and for 
Kelzan solutions but for the three highest concentrations of the polyox solutions 
ag is positive. 

4.3. Using values of A and of sl/s2 to determine ai 

s1 was obtained by drawing the best straight line through the experimental 
points obtained with water as the test fluid (figure 10 a).  s2 was then found from 

F L M  60 
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1 - TilJTa 

1.30 

1.20 
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1 - TaJTa 

1 - Ta,/Ta 

FIGURE 10. 1 $ 1  as a function of 1 - Ta,/Ta for Newtonian (crosses and triangles) and non- 
Newtonian (circles) fluids. = 0.95. Aqueous polyacrylamide solutions. (a) 250 p.p.m. 
(b)  100 p.p.m. (c) 50 p.p.m. 

Concentration t - (El + 2%) 
(p.p.m.) ("C) (mg m-l) 

250t 25 0.66 
50 15 0.32 

25 0.40 
35 0.75 

100 15 - 0.30 
25 0.22 
35 0.63 

250 15 0.45 
25 0.78 
35 1.08 

500 15 0.55 
25 0.78 
35 1.17 

- a2 

18.8 0.02 
6.2 0.03 

11-2 0.02 
21.4 0.02 
- 5.0 0.03 

4.4 0.03 
15.4 0.02 
11.0 0.02 
24.0 0.02 
33.0 0.02 
10.4 0.03 
19.2 0.02 
48.8 0.01 

(mg m-l) - A  

t Experiments of Marshall (1967); others from Davies (1972). 

TABLE 2. Values of the material constants of aqueous polyacrylamide solutions as a function 
of temperature, determined from figure 7 using experimental measurements of A and of 
s,/s2 for 7 = 0.95. Experimental accuracy discussed in the text. 
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(P .P .m. 1 
50 

100 

250 

TABLE 3. Values o 

Concentration 
7 100A 

0.95 2.25 
0.925 3.33 
0.90 5.0 
0.95 1.5 
0.925 7.0 
0.90 9.0 
0.95 6.0 
0.925 10.0 
0.90 12-0 

- (011 + 201,) - 012 Y 
(mg m-l) (mg m-I) (s-l) 

0.35 6.2 183 
0.85 9.4 67 
1.9 10 33 
0.6 14.5 187 
2-8 41.4 70 
5.2 44.1 35 
0.89 20.4 210 
3-8 61.9 79 
18 184 40 

~~ 

- A  
0.03 
0.03 
0.10 
0.02 
0.03 
0.06 
0.02 
0.03 
0.05 

the material constants of aqueous polyacrylamil-.J solutions at 25 "C,  
determined from figure 7 using experimental measurements of A and of sI/s2, for various 
values of 7. Experimental accuracy discussed in the text. 

experiments with the polymer solutions, by drawing the best straight lines with 
the additional restriction that they should pass through the same intercept on 
the abscissa as does the line for water (figures IOa, b, c). Values of the a, were 
then obtained from figure 7. That + 1 when 1 - Ta,/Ta = 0 results from the 
experimental discontinuity that occurs in G when T a  = Tac, and the theory 
takes no account of such a discontinuity. 

5. Discussion 
5.1. Ta, as a function of 7: Newtonianjluids 

The percentage differences between our experimental values of Ta, and the 
theoretical values are within our error of measurement of d3. (If we correct d3 
accordingly only insignificant differences occur in our values of A.)  But the 
striking feature of figure 4 (c) is that all but two of the experimentally determined 
values of Ta,  are less than the theoretical ones and one of those two was obtained 
by D.M. Davies with slots in the guard ring of the apparatus. If differences 
between theory and experiment were due to errors in d, a random distribution of 
points about the theoretical curve might be expected. Suppose the experiments 
and theory disagree because energy is fed from the motor into the fluid, thus 
actuating the vortices a t  lower values of i2 than that predicted by the ideal 
mathematical case. (Vortices can in fact be actuated as !2+ a, by tapping the 
apparatus lightly.) Prom considerations of energy balance it can be shown that 

r3/5 = r,(l  - r3) + r37 
in which 

rl = [TaJTaJs,  r2 = [Tak/Tak]*, r3 = [Tap/Tan]t, 

where Tak = the theoretical critical Taylor number (Newtonian), 

Ta, = the observed critical Taylor number (Newtonian), 

Tak = the theoretical critical Taylor number (non-Newtonian), 

Tap  = the observed critical Taylor number (non-Newtonian). 
3-2 
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By substitution of known values it is seen that r3 is negligibly different from r2, 
that is, the observed A will not differ significantly from the theoretical A as a 
consequence of T a ,  being less than Tah. 

If on the other hand Tan  < Ta; because of a faulty assumption in the theory 
such as, for example, that the perturbation velocities are much less than the 
rotational velocities in the fluid, then a theoretical re-assessment would be 
required to see if the observed A could be significantly different from the 
theoretical A. (The perturbation velocities cannot be much less than the rota- 
tional velocity near the outer cylinder, which is stationary.) 

5.2. Use of A as a function of 7 to determine a, 
No physically meaningful result was obtained, that is, a2 was always positive. 
If the conclusions of the previous paragraph are accepted the result could be 
attributed to the failure of the second-order fluid model. (See 95.6.) Even so 
figure 9 can be considered as an illustration of the potential accuracy of the 
method: because of the experimental uncertainty and the acute angles at  which 
the curves meet, there will be a large range of possible values of the ai. 

5.3. Use of A and 8 to determine ai 

The large error in the measured value of 8, is not due to difficulty in the measure- 
ment of but due to inherent variations in the forms the cells take up. Other 
workers (e.g. Coles 1965) have found variations in the number of cells that can 
form in what appear to be identical situations. Even so, the spread in the values 
of the ai obtained from relatively few (five to six) repeat measurements of A and 2 
are more accurate than expected ! That suggests that some other imponderable 
appears in the experiments, such as, let us suppose, favoured patterns of cell 
distributions (for solution and solvent alike) that recur in such a way that 
averages of E are far more accurate than the collection of repeated values of ec for 
solution and for solvent would indicate. So, in practice, the spread among the 
values obtained for the ai should be a guide to the accuracy rather than the spread 
among the values of ec. 

Positive values of a2 were obtained for aqueous polyox solutions of the highest 
concentrations (table 1). Had the values ofp as determined in the coaxial cylinder 
apparatus been used A would have been negative and a2 would then have been 
found to be negative. There is a sound argument for using the value of p deter- 
mined in situ in this case because the viscosity of polyox solutions is notoriously 
shear dependent, but we have refrained from doing so for the sake of consistency. 
(The average shear rate in the Ostwald viscometer was about the same as that 
in the Couette apparatus but of course the shear rate at  the capillary wall would 
be larger than the average.) 

5.4. Use of A and sl/s2 to determine ai 
Figure 7 shows that curves of constant sl/sz and constant A cross approximately 
a t  right angles thus giving a better fix for the values of the aq than do the curves 
of figures 5 and 6. Thus for similar errors in A, B and sl/sz this method of drag 
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reduction gives the most accurate determination of the a,. However, equation (9), 
relating $(a,, a,) to a, and a,, is only applicable to narrow-gap geometry and it is 
likely that the variation of the a, with gap size shown in table 3 is largely a 
consequence of the inapplicability of (9). But here again the exact form of (9) is 
not required for a discussion of the instrument as a means of determining the ai. 

From Chan Man Fong’s ( 1 9 7 0 ~ )  work an exact expression may be obtained 
for $(a,, a,) for a narrow gap but the numerical solution of his form of the equa- 
tion has not been attempted by us yet. Even so, for 7 = 0.95 equation (9) must 
be as accurate as our experimental results because the ai determined from A and B 
agree with those determined from A and s1/s2. If the theory were exact experi- 
mental difficulties could remain. In drawing the best straight lines for the 
Newtonian and non-Newtonian fluids through the same point on the abscissa 
(figure 9) we are assuming that energy imbalance which produces a discontinuity 
in the $P, P-l curves affects 1 - TaJTa similarly, independently of the fluid, but 
perhaps that is justified by the discussion of r,, r ,  and r3 in 3 5.1, in that ratios of 
values of Ta are not affected by additional energy input (additional to the rota- 
tional energy). In  this connexion it is interesting to see that Denn et al. (1971) 
draw best straight lines through the experimental points so that they pass 
through 1 - Ta,/Ta = 0. Inspection of their results will show that their experi- 
mental point would be a better fit on lines passing through a negative value of 
1 - TaJTa as in figure 9. 

A further feature of our results to be commented on is the values we find for 6. 
The theoretical value of 6 for narrow-gap geometry is 1.53 and when 7 = 0.5 the 
value is 0.83 (Davey 1962). The values we find when 7 = 0.95, 0.925 and 0.90 are 
1.09, 1.15 and 1-61 respectively. It is relevant to note that the best straight lines 
do pass through TaJTa = 1 when 7 = 0-90 whereas for the other two gaps they 
do not. If the straight lines were drawn to pass through Ta,/Ta = 1 when 
7 = 0.95 and when 7 = 0.925, the slopes would be greater and near 1.5. It seems, 
therefore, that the presence of a discontinuity in the experiments has resulted in 
the slope of the best lines being smaller than that predicted theoretically, and 
when the discontinuity is absent, as in the case of 7 = 0.90, the experimentally 
determined value agrees with the theoretical prediction. It is also pertinent to 
note that experimental and theoretical values of Ta, agree (figure 4c)  when 
7 = 0.90, consistent with our view that discontinuities and the disagreement 
between Ta, values are both related to energy fed in other than from rotation. 
But as shown in 8 5.1 the values of A are not affected. 

It might now be asked whether, since experimentally a +  1.53, the theory 
being applied to determine $(a,, a,) is quantitatively applicable. To answer 
the fact, the ratio of the slopes of the curves for the Newtonian and non- 
Newtonian fluids has been used so that differences between theory and experi- 
ment in a multiplying constant such as 6 should cancel out. 

5.5. Considerations concerning the improvement of the apparatus 

The most accurate of the three methods of determining the a,, given an accurate 
numerical solution of the equations involved, is that involving A and s1/s2. All 
the measurements here are measurements of torque alone. At Ta, the magnitude 
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of the torque per unit length of cylinder depends on y only so there is no optimum 
radius for accuracy in determining A. Also the ratio sl/s2 is independent of R, and 
R, and of h and no increase in sensitivity is obtained by changing the dimensions. 
It is true that G increases with h but as h increases so does the necessity of a more 
robust suspension and so a loss of sensitivity in measuring q5. 

Figures 5, 6 and 7 show that the a, are more accurately determinable by all the 
methods as 7 increases. We have tried an inner cylinder in our apparatus such 
that 7 = 0.98 but we have found it tedious to align and then the speed of rotation 
is such that as Q+ Qc the mechanical vibrations lead to fluctuations which are 
prohibitively large; and the outer cylinder sticks. We have tried no experiment 
with cylinders giving values of 7 between 0-95 and 0-98 but it would obviously 
be advantageous to discover from practical experience which value of 7 would 
be the largest usable. 

As 9 increases so does the rate of shear at the critical value of the angular speed 
and consequently so does the frictional heating per unit volume at QC increase 
with 7. An order-of-magnitude calculation will show that when 7 = 0.98 
(assuming it could be set up in our apparatus) all the heat generated could be 
dissipated by a temperature differential within the liquid of 2: "C, for the 
dilute solutions having viscosities within 40% of that water. For a larger 
apparatus the temperature differential would be less. So any misgivings con- 
cerning frictional heating in the narrower gaps can be set aside for dilute polymer 
solutions, in considering the design of the apparatus. 

A further guide line for the design comes about from consideration of the 
likely range of values of the ai to be measured. Figures 6 and 7 show that if 
la,/ < +2.5mgm-l then the apparatus should be designed such that 9 > 0-95 
and from considerations already given this would imply larger radii of cylinders 
to yield a wider gap (in absolute terms) to facilitate the setting up of the 
apparatus. Also as already stated torque measurements involving Ta, and the 
drag during secondary flow are the most sensitive and consequently the design of 
apparatus should be a suspended outer cylinder on a torsion fibre. But a note of 
caution must be struck. Calculation of A and B for 7 = 0.98 (figure 11) for low 
values of the at illustrates how sensitive the Taylor instabilities are then to 
elasticity, but the figure also shows that the same value of A can be obtained for 
different ai and only sl/s2 (or Z) fixes the values of the a,; the measurement of E 
is relatively inaccurate, so ambiguities could arise. But values of A of order unity 
would be observed for the values of the a, which we have observed in our experi- 
ments. The design of the apparatus would then involve a large range of rotational 
speeds with associated difficulties of adjustments and accompanying vibration. 
A value of A of 0.50 could be measured to within 2 x, that is & 0.01, and that 
would be adequate; A = 0.50 when 0.95 < 7 < 0.98. Further calculation would 
indicate the value of 7 for the range of ai to be measured. 

Should it be necessary to measure E rather than s1/s2 to determine a, then A 
could be measured in an apparatus such as ours and a long coaxial cylinder 
apparatus built with the same values of R, and R, to determine the cell size. The 
restriction on the length would be the number of cells to be observed to attain 
the required accuracy. 
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a1 + 2a, (mg m-l) 

FIGURE 11. Theoretical curves of constant A (solid lines) and of constant Z (broken lines) 
as a function of low values of the ai. r] = 0.98. 

5.6. Comments on the results 

It has been necessary to determine Tu ,  to within better than 1 % and it can be 
seen that relatively imprecise measurements could lead to very dissimilar results 
and that is the likely reason for the conflicting reports in the literature concerning 
the stability of dilute polymer solutions. Also, it is apparent from our results 
that a small amount of disturbance of the flow (due to slots) which does not alter 
the value of T a ,  by more than 1 yo does influence the value of A, in that destabili- 
zation was observed in some instances whereas without the slots there was 
stabilization in all cases. Lastly, as mentioned above, we found visual methods 
of determining Ta,  to be too inaccurate to be considered. 

In  precise experiments (measurement of Tu, to within better than 1 %) A is 
(i) positive, (ii) increases with concentration and (iii) increases as 7 decreases 
(table 3). The ]ail (i) increase with increasing concentration and (ii) increase with 
increasing temperature. h is always negative and Ihl lies between 0.02 and 0.07. 
There is evidence that the ai are functions of y in that determining A as a function 
of 7 gives no negative value for a2. (The fact that the ad vary with 7 when deter- 
mined from A and sJs2 could be a misapplication of the theory.) 

Many more experiments have been done with polyacrylamide solutions at  
25 "C than with any other solution at any other temperature. Average values of 
the ai with r.m.s. deviations, found from all methods giving negative valuesfor aZ, 
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Concentration - (a1 + 2a2) - a2 
(p.p.m.) (mg m-l) (mg m-l) - A  

50 0.26k0.11 6.5 & 0.9 0.02 
100 0*39+0*11 9.0 * 1.0 0.02 
250 0.75 f 0.04 20.8 k 0.2 0.02 

TABLE 4. Summary of the values found for the material constants of 
aqueous polyacrylamide solutions at 25 "C. 

are given in table 4. The relatively low deviation for the 250p.p.m. solution 
results because it was used as a test solution in trying out experiments with 
polymer solutions so there are many more results. It is seen that h is constant, 
small (0.02) and negative. Tanner (1972) reported on several measurements of 
the ratio of the normal stress coefficients (but of more concentrated solutions) 
and quoted values of around - 0.15 to - 0.05. 

Concerning the validity of the second-order equation, then, the equation is 
satisfactory in that meaningful results (just cited) are obtained from measure- 
ment of A, E and sl/sz in the same gap but is unsatisfactory in that when the ai are 
determined from A as a function of 7 meaningful results are not obtained. The 
shear times y-l in the three gaps (30, 15 and 5 ms respectively) were of the order 
of the relaxation times (10-50ms) given by 2a2/a,. So elastic effects which are 
a function of the gap size might be expected. If a third-order equation were 
necessary to describe fluid behaviour there should be some dependence of a,, on y 
and there is evidence for that in the more concentrated solutions. Use of the 
third-order equation will require the evaluation of five material constants and 
therefore measurement of five experimental variables; those would be p, A, ~ , 8  
and sl/sz. When the effect of elasticity on the stability of the azimuthal wavy 
structure that occurs at  1-5TaC is calculated using principles discussed by DiPrima 
(1961) and Davey, DiPrima & Stuart (1968) then a sixth experimental variable 
could be introduced. The present state of our work is the application of third- 
order theory to our results to see if the ' constants ' of the third-order equation 
are in fact constant, over a wider range of conditions than are the constants of 
the second-order equation. 

6. Conclusion 
Given an accurate theory involving just two material constants (other than 

shear viscosity), the study of Taylor instabilities is a sensitive means of evaluating 
them, capable of determining values of order 1 mg m-1. The most sensitive com- 
bination of measurements to use is that of the change in the Taylor number 
together with that of drag reduction in secondary flow. 7 should be chosen so that 
A N 0.50 for the particular a$. 

The authors are grateful to Dr K. Walters of the Department of Applied 
Mathematics of this College, for his advice and help in many valuabIe discussions. 



Taylor vortices and the evaluation of material constants 41 

REFERENCES 

BAILEY, B. J. 1969 Nature, 222, 373. 
CHANDRASEKHBR, S. 1953 Proc. Roy. SOC. A 216, 293. 
CHANDRASEKRAR, S. 1958 Proc. Roy. SOC. A 246, 301. 
CHAN MAN FONG, C. F. 1965 Rheol. A&, 4, 37. 
CHAN MAN FONG, C. F. 1970a Appl. Xci. Res. 23, 16. 
CHAN i&m FONG, C. F. 1970b 2. angew. Math. Phys. 21, 977. 
COLES, D. 1965 J. Fluid Mech. 21, 385. 
DAVEY, A. 1962 J. Fluid Mech. 14, 336. 
DATEY, A., DIPRIMA, R. C. & STUART, J. T. 1968 J. Fluid Mech. 31, 17-52. 
DAVIES, D. M. 1968 M.Sc. thesis, University of Wales. 
DAVIES, D. M. 1972 Ph.D. thesis, University of Wales. 
DEBLER, W., FuNEn, E. & SCHAAF, B. 1968 Appl. Mech. Proc. 12th Int. Cong. Appl. Math. 

DENN, M. M. & ROISMAN, J. J. 1969 A.1.Ch.E. J. 15, 454. 
DENN, M. M., SUN, Z.-S. & RUSHTON, B. D. 1971 Trans. SOC. Rheol. 15, 415. 
DIPRIMA, R. C. 1960 J. Fluid Meck  9, 621. 
DIPRIMA, R. C. 1961 Phys. Fluids, 4, 751. 
DONNELLY, R. J. 1958 Proc. Roy. Soo. A246, 312. 
DONNELLY, R. J. 1965 Proc. Roy. Soo. A 283, 509. 
DONNELLY, R. J. & FULTZ, D. 1960 Proc. Roy. SOC. A258, 101. 
DONNELLY, R. J. & SCHWARZ, K. W. 1965 Proc. Roy. SOC. A283, 531. 
DONNELLY, R. J. & SIMON, N. J. 1960 J. Fluid Me&. 7, 401. 
GIESEKUS, H. 1966 Rheol. Acta, 5, 239. 
GINN, R. F. & DENN, M. M. 1969 A.I.Ch.E. J .  15, 450. 
GODDARD, J. D. & MILLEn, C. 1967 University of Michigan Tech. Rep. no. 06673-8-T. 
GRAEBEL, W. P. 1961 Phys. Fluids, 4, 362. 
GRIFFITHS, J. D. & THOMAS, R. H. 1966 J .  Me'canique, 5, 101. 
HAYES, J. W. & HUTTON, J. F. 1970 Progr. Heat Transfer, 5, 195. 
JONES, W. M. & MARSHALL, D. E. 1969 J. Phys. D 2, 809. 
KARLSSON, S. K. F., SOKOLOV, M. & TANNER, R. I. 1971 Chem. Engng Prog. Syrnp. Ser. 

p. 158. 

67, 11. 
LEWIS, J. W. 1928 Proc. ROY. SOC. A 117, 388. 
LOCKETT, F. J. & RIVLIN, R. S. 1968 J. Mdcanique, 7, 475. 
MARSHALL, D. E. 1967 M.Sc. thesis, University of Wales. 
MERRILL, E. W., MICKLEY, H. S. & RAM, A. 1962 J. Fluid Mech. 13, 86. 
OLDROYD, J. G. 1950 Proc. Roy. SOC. A200, 523. 
RUBIN, H. & ELATA, C. 1966 Phys. Fluids, 9, 1929. 
RUBIN, H., ELATA, C. & POREH, M. 1968 Rheol. Acta, 7, 340. 
SMITE, M. M. & RIVLIN, R. S. 1972 J. Me'canique, 11, 69. 
SONG, C. S. & TSAI, P. Y. 1966 University of Minnesota, Project Rep. no. 84. 
STUART, J. T. 1958 J. Fluid Mech. 4, 1. 
TANNER, R. I. 1972 VI th  Int. Cong. Rheol., Lyons. 
TAYLOR, G. I. 1923 Trans. Roy. SOC. A223, 289. 
TAYLOR, G. I. 1936 Proc. Roy. SOC. A 157, 546. 
THOMAS, R. H. & WALTERS, K. 1964 J. Pluid Mech. 18, 33. 




